Last week I blogged about a Nature paper on graphene transistors with a self-aligned nanowire gate. Well, as I gather from a blog post by Doug Natelson, largely the same UCLA researchers have now published a paper in Nano Letters that uses a rather similar idea, even though in the latest paper the nanowire gate is made from another material, and it seems the latest transistors are even faster.
However, I am worried about the obviously parallel publication of these two papers. The Nature paper was submitted 23 May, published 1 September. The Nano Letters paper was submitted 16 May and published 3 September.
As Doug says: “Looks like they managed to get two papers in good journals for the price of one technique advance.” And I agree, it looks very much like salami slicing of research results to me. In particular, I like to emphasize that it is editorial policy of Nature journals that editors (like myself) are informed about any related submission made to other journals — see Nature‘s policy on duplicate submissions and plagiarism.
I have not checked this fact with my colleagues and if I would have I could not comment here on my private blog, but I do wonder whether such communication has taken place here. If I were the handling editor, this dual publication would not have been knowingly possible, but others might of course have a different opinion.
Either way, in cases where our policy on duplicate submission is not followed, little can be done if clearly different materials were used, even if a study is based on a similar concept. Apart from increased scrutiny of such authors in future submissions of course.
References:
Liao, L., Bai, J., Cheng, R., Lin, Y., Jiang, S., Qu, Y., Huang, Y., & Duan, X. (2010). Sub-100 nm Channel Length Graphene Transistors Nano Letters DOI: 10.1021/nl101724k
Liao, L., Lin, Y., Bao, M., Cheng, R., Bai, J., Liu, Y., Qu, Y., Wang, K., Huang, Y., & Duan, X. (2010). High-speed graphene transistors with a self-aligned nanowire gate Nature DOI: 10.1038/nature09405
Trackbacks/Pingbacks
[…] that reach speeds up to 300 GHz, although with what I believe is a far less scalable approach. In a publication by the same people parallel to their Nature paper (and thus contrary to Nature‘s editorial policy), they even claim speeds up to 1,400 […]