Tag Archives: topological insulators

Samarium hexaboride

December 12, 2012

1 Comment

There is a lot of buzz in the physics community about a new topological insulator: samarium hexaboride, SmB6. The reason why any major discovery about topological insulators seems to be big news is that these materials have some unique electrical characteristics that make them not only very interesting from a fundamental point of view but also for electronic applications.

Topological insulators are electrically insulating in their interior, but at the surface they do conduct current. Moreover, the surface currents are topologically protected (hence the name), which means that the electrons that carry those currents don’t veer off the track easily and maintain their properties over long distance. Although a number of topological insulator compounds are known, the problem so far has been that it has been difficult to fabricate these with sufficient purity such that the interior was indeed insulating. This has been a problem, as the electrical current inside the materials just overwhelms the surface properties. […]

Continue reading...

The two sides of promoting materials science

November 7, 2011

5 Comments

The study of materials is one of the major areas of science, with legions of researchers in physics, chemistry and materials science working on this topic. Condensed matter physics is one of the largest research areas in physics. Yet, it makes me often uneasy how the benefits of materials science are promoted. It is all too often about applications, and not about fundamental physics. How materials such as graphene might revolutionize electronics. And how new physical concepts could be used to develop materials for energy applications: solar cells, batteries and so on. In classical materials science it’s often about tougher materials, such as enhanced steels, and less about the fundamental insights they are based on. Of course, applications are an important aspect in the study of materials. But does this mean that too often fundamental insights are neglected in favour of a material’s commercial potential?

[…]

Continue reading...

2010 – twelve months of great science

December 27, 2010

3 Comments

The past year has been a great year for science with major advances in several areas. Too many exciting results to mention here. Instead, to reflect about the past year I have chosen a representative paper for each month of the year that I hope can serve as an example of the great science going on in a number of research fields. Of course, this is a highly subjective and personal collection, and indeed there might be others worth mentioning. But the aim was also to provide a balanced overview of the year that covers a variety of topics.

Of course, if you have an exciting paper to add, please feel free to use the comments section below to let us know!

Anyway, enough said, here are some of my highlights from the past year:

Simulations of electronic excitations in an iron-based superconductor. Image by Oak Ridge National Laboratory via flickr.

JANUARY – iron-based superconductors

Since they were discovered in 2008, iron-based superconductors, the pnictides, have been one of the hottest topics in condensed matter physics. Part of their appeal stems from the fact that they are based on iron, which is a magnetic element. Normally, magnets and superconductivity exclude each other.

The iron-based compounds have a similar crystal structure as the so-called cuprates, which are the materials with the highest superconducting temperatures known. The mechanism for these high-temperature superconductors is unknown, and studying the iron-based superconductors may also be relevant to the understanding of the cuprates.

This paper published in Science shows for the first time that the electrons in the iron-based superconductors show a periodic arrangement that is different to the periodicity of the atoms in the crystal. Similar observations have been made in the cuprates, and their understanding is considered important to the mechanism of high-temperature superconductivity.

Chuang, T., Allan, M., Lee, J., Xie, Y., Ni, N., Bud’ko, S., Boebinger, G., Canfield, P., & Davis, J. (2010). Nematic Electronic Structure in the “Parent” State of the Iron-Based Superconductor Ca(Fe1-xCox)2As2 Science, 327 (5962), 181-184 DOI: 10.1126/science.1181083

[…]

Continue reading...