Archive | Science Policy RSS feed for this archive

Elementary needs

October 14, 2010

7 Comments

This morning I read an article by the Scientific American editor David Biello on an important topic: the importance of rare earth elements for our economy, and the power of those few countries that export them on a larger scale. (disclaimer: Scientific American is part of Nature Publishing Group, my employer)

David hits an important point there. But to my mind, the problem is far more critical and fundamental than this single, focussed example suggests, and we need to act on it soon.

Salt production at Salar de Uyuni. This salt flat harbours 50% of the world's lithium reserves. Image by Ricampelo via Wikimedia Commons.

The issue is that rare earth elements such as neodymium are essential to green energy and our economy. Neodymium is part of Nd2Fe14B, a powerful permanent magnet that is used for electromotors, read heads of hard disk drives, etc. Each wind turbine apparently uses 300 kg of neodymium, each Toyota Prius about 1 kg. At present, China produces 97% of all neodymium.

And this is the problem. China has implemented export controls for its rare earth elements resources. In a recent diplomatic spat with Japan, they temporarily restricted the export of rare earth elements to Japan. But the Chinese should not take all the blame for a little realpolitik. Heard of the 1973 oil crisis?

[…]

Continue reading...

The importance of scientific research

October 8, 2010

4 Comments

Science is Vital!

Bleak prospects

Today I take a break from my usual blogging on scientific research to highlight an issue of more immediate concern: the threat to the scientific infrastructure in the UK and elsewhere.

The 2007/2009 recession hit us all. Those that own houses had their value reduced. Those that are just about to finish university have to worry about possibly being part of a lost generation of highly educated graduates not being able to find employment. Those that always had to struggle making ends meet are affected by savings to government services and by problems arranging bank credits. And some of our governments now find themselves in deep budget deficits.

This is the broader reason why some governments, like the US, like Japan, like the UK, are now considering cuts to their budget. In the UK, the situation is particularly severe, and this is why here I like to focus on this example even though the same principles would apply elsewhere as well.

The UK government aims to implement a cut of 25% in overall government spending across all areas, even though out of a total annual government budget of about 670 billion pounds, science has only a share of 6 billion. The implications could be severe. A scenario where the science budget is cut by 20% has been described by a Royal Society analysis as “game over”.

[…]

Continue reading...

The very fabric of research: a visit to the ILL in Grenoble

September 20, 2010

3 Comments

The nuclear reactor at ILL. The nuclear fuel is underneath the steel shield. The blue glow of that is partly visible is caused by Cerenkov radiation.

You look down into a clear pool of water. The water has an appealing blue glow to it that makes you want to dive into it. But this isn’t a swimming pool, it is a nuclear reactor. And the soothing blue glow is not due to the blue paint of the pool walls but caused by the Cerenkov radiation, emitted as a result of the electrons created by the fission process that move faster than the speed of light in water.

The electrons that are ejected from the nuclear fuel elements are fast than the speed of light in water (about 75% of the speed of light in vacuum). Similar to the supersonic bang of jets that fly faster than the speed of sound, Cerenkov radiation is emitted by water as the fast electrons pass through it. The blue shimmer of the Cerenkov radiation is visible on the right of the photo, showing the pool containing spent reactor fuel.

The reactor I am visiting is that at the Institut Laue-Languevin (ILL) in Grenoble. As a research reactor it is generating up to 58 megawatts of power, about 25 times less than that of commercial reactors. Still, I am nervous holding my camera directly above the pool to take pictures, afraid I might be dropping it into the running reactor. But there is no need to worry, it is safe to stand there, the water is a perfect shield from the radiation, it absorbs all the neutrons and electrons created by the nuclear reaction. And there is of course plenty of security and radiation monitoring before, during and after my visit. Even if I would drop the camera into the pool, there is a steel construction in the water that would catch larger objects. And stuff that would slip through that grid would probably lie harmlessly at the bottom of the pool until the reactor is decommissioned.

Not many people are allowed inside the reactor and I am lucky enough to be invited to the ILL along with a few British colleagues. It is only the second time I am inside a nuclear reactor. It is an awesome feeling, certainly for a physicist, to see an operating reactor and to admire the technology that keeps the nuclear chain reaction under control. The impressions from my visit not only reinforce what I know about the benefits of neutron research, but the variety of research to me also underlines the dangerous implications of possible recession-related government budget cuts to facilities like ILL.

ILL was founded by France and Germany in 1967, with the UK becoming a third major partner in 1973. Initially, the UK did not join the institute because it wanted to build its own reactor, tells us our tour guide, Andrew Harrison, an Associate Director of ILL. Nowadays it seems almost unbelievable to me that the UK abstains from a European research project because it intends to invest more money into a certain area of research, not less. In any case, today, Germany, France, and the UK still share 75% of ILL’s operating budget of 88 million Euros, the rest being distributed amongst its other international partners. Their continuing support has made ILL one of the leading research institutions that uses neutrons for experiments in life sciences (18% share of experiments), environment (11%), materials science (29%) and fundamental sciences (35%).

[…]

Continue reading...