September 20, 2010

3 Comments

The very fabric of research: a visit to the ILL in Grenoble

The nuclear reactor at ILL. The nuclear fuel is underneath the steel shield. The blue glow of that is partly visible is caused by Cerenkov radiation.

You look down into a clear pool of water. The water has an appealing blue glow to it that makes you want to dive into it. But this isn’t a swimming pool, it is a nuclear reactor. And the soothing blue glow is not due to the blue paint of the pool walls but caused by the Cerenkov radiation, emitted as a result of the electrons created by the fission process that move faster than the speed of light in water.

The electrons that are ejected from the nuclear fuel elements are fast than the speed of light in water (about 75% of the speed of light in vacuum). Similar to the supersonic bang of jets that fly faster than the speed of sound, Cerenkov radiation is emitted by water as the fast electrons pass through it. The blue shimmer of the Cerenkov radiation is visible on the right of the photo, showing the pool containing spent reactor fuel.

The reactor I am visiting is that at the Institut Laue-Languevin (ILL) in Grenoble. As a research reactor it is generating up to 58 megawatts of power, about 25 times less than that of commercial reactors. Still, I am nervous holding my camera directly above the pool to take pictures, afraid I might be dropping it into the running reactor. But there is no need to worry, it is safe to stand there, the water is a perfect shield from the radiation, it absorbs all the neutrons and electrons created by the nuclear reaction. And there is of course plenty of security and radiation monitoring before, during and after my visit. Even if I would drop the camera into the pool, there is a steel construction in the water that would catch larger objects. And stuff that would slip through that grid would probably lie harmlessly at the bottom of the pool until the reactor is decommissioned.

Not many people are allowed inside the reactor and I am lucky enough to be invited to the ILL along with a few British colleagues. It is only the second time I am inside a nuclear reactor. It is an awesome feeling, certainly for a physicist, to see an operating reactor and to admire the technology that keeps the nuclear chain reaction under control. The impressions from my visit not only reinforce what I know about the benefits of neutron research, but the variety of research to me also underlines the dangerous implications of possible recession-related government budget cuts to facilities like ILL.

ILL was founded by France and Germany in 1967, with the UK becoming a third major partner in 1973. Initially, the UK did not join the institute because it wanted to build its own reactor, tells us our tour guide, Andrew Harrison, an Associate Director of ILL. Nowadays it seems almost unbelievable to me that the UK abstains from a European research project because it intends to invest more money into a certain area of research, not less. In any case, today, Germany, France, and the UK still share 75% of ILL’s operating budget of 88 million Euros, the rest being distributed amongst its other international partners. Their continuing support has made ILL one of the leading research institutions that uses neutrons for experiments in life sciences (18% share of experiments), environment (11%), materials science (29%) and fundamental sciences (35%).

Continue reading…

September 17, 2010

1 Comment

More cool polariton stuff

Earlier this week I wrote about some of the exciting polaritons in semiconductors. And just a few days later, there is another intriguing paper on this topic out. Something that I speculate(!) might lead to new types of quantum computers.

But to recapitulate, polaritons are object that form when light interacts with electronic excitations. What I also mentioned was that if cooled down to about 30 degrees above absolute zero the polaritons for a condensate. In this condensate all polaritons are identical — they oscillate synchronously. Mathematically, they all have the same phase.

Typical semiconductor structure in which polaritons can be created. Two mirrors (DBR) on top and bottom of the device confine light between them. In the center is a layer (red) where the high light intensity between the mirrors creates polaritons. In the present study two such layers are placed right next to each other. Image reprinted by permission from Macmillan Publishers Ltd: Nature Materials 9, 655 (2010).

In my last blog post, I described how acoustic waves can separate this condensate into thin wires. What Benoit Deveaud-Plédran and colleagues from the École Polytechnique Fédérale de Lausanne in Switzerland have now realised is along the same idea: they fabricated two polariton condensates right next to each other.

What happens if the two thin layers with polariton condensates come close to each other? Something very similar to what superconductors do. The particles in superconductors also are in the same quantum state, with the same phase. And what we also know is that if two superconductors are brought in close contact to each other and if an electrical voltage is applied across the barrier that separates the two, an electric current flows.  But unlike the static current of normal conductors, for superconductors it shows a characteristic modulation: the magnitude of the current that flows oscillates over time. This is the Josephson effect.

Continue reading…

September 14, 2010

1 Comment

The cool side of semiconductors

Ultracold atoms might no longer be the only hot game in the town of cold condensates. A few weeks ago I highlighted the analogies between the science of ultracold atoms and other areas of physics, down to lasers even. Now meet the new kids on the block: the polaritons. Even though they sound more like the name of a 1960s rock’n’roll band, polaritons are the basis of some of the hottest research not only in condensed-matter physics but also in photonics.

Polaritons form when light couples to electronic excitations in a material. A widely studied type of polaritons, which I mentioned previously in the context of enhanced solar cells, is surface plasmon polaritons. Surface-plasmon polaritons are successfully used in photonics because they enable a versatile, highly local control of light by nanoscale structures. Applications range from sensing and the guiding of light to solar cells and other optical devices.

Schematic of the acoustic waves applied to a polariton condensate. The polaritons are shown in red. DBR are the mirror layers between which the polaritons are confined. (c) 2010 American Physical Society

A perhaps lesser known variety of polaritons are exciton-polaritons, which are quickly turning into a hot research area themselves because they enable the study of fundamental quantum physics phenomena directly in a semiconductor.

Exciton-polaritons form in semiconductors such as GaAs, which have a band structure where the lower energy band, the valence band, is occupied by electrons, and the higher energy band, the conduction band, is empty. If an electron is excited to the conduction band, an empty unoccupied space, a hole, remains in the valence band. The hole left behind in the sea of valence band electrons has a positive charge. The electrostatic interaction between the positive hole in its low-energy state and the negative electron in the high-energy state leads to the formation of a combined entity known as an excition. And these excitons can interact with light to form exciton-polaritons. Usually, they are simply referred to as polaritons.

The high materials quality that can be achieved in semiconductors such as GaAs means that polaritons exist long enough to do experiments with them. Even though the interaction between polaritons is much different than that between ultracold atoms, there are also similarities. Bose-Einstein condensation for example, known from ultracold atom systems, has been observed in polariton systems.

Maurice Skolnick from the University of Sheffield in the UK and his colleagues have now shown in a paper published in Physical Review Letters that polariton condensates can be dynamically controlled by sound waves applied to the semiconductor. “The dynamic modulation allows for the first time a tunable periodic potential to be applied to the polariton condensate,” says Skolnick. This, so Benoit Deveaud-Plédran, a physicist from École Polytechnique Fédérale de Lausanne in Switzerland who also works on polaritons, offers the opportunity to study the reactions of polaritons to these changes in environment: “I really like the idea that is proposed here, playing with condensates with a surface acoustic wave is indeed great.”

Continue reading…