Tag Archives: cloaking

The cloak that hides events in time

January 4, 2012

1 Comment

The temporal cloak. A light beam of a single colour is directed at a split-time lens (STL) that converts it into different colours. As the beam then propagates through an optical fibre, the blue light components travel faster than the red ones (the vertical axis shows time), so that eventually a brief gap is formed in the travelling beam during which there is no light present. Therefore, any even taking place during that temporal gap will be concealed from the beam. Afterwards, a reverse process restores the original beam so that an observer does not notice the cloaking device. Reprinted by permission from Macmillan Publishers Ltd. Nature (2012). doi:10.1038/nature10695

Devices that conceal objects from an observer are called cloaks. Conceptually, the idea of cloaking devices has its roots in science fiction, but such devices have indeed been demonstrated in the past few years. These cloaks are based on tiny structures that are able to bend light on predetermined paths as it passes through the structure. This is like a lens, but consisting of manmade materials, and much more versatile and powerful.

A very different type of cloak has now been published in Nature by Alexander Gaeta and colleagues from Cornell University. Following earlier theoretical proposals, they have now demonstrated the first temporal cloak where events are hidden in time, not in space so that an event is concealed from a light beam travelling through the same space for a certain amount of time. To understand the difference of a temporal to a spatial cloak, Robert Boyd and Zhimin Shi from the University of Rochester make a very good comparison in their News and Views article on the paper: […]

Continue reading...

2010 – twelve months of great science

December 27, 2010

3 Comments

The past year has been a great year for science with major advances in several areas. Too many exciting results to mention here. Instead, to reflect about the past year I have chosen a representative paper for each month of the year that I hope can serve as an example of the great science going on in a number of research fields. Of course, this is a highly subjective and personal collection, and indeed there might be others worth mentioning. But the aim was also to provide a balanced overview of the year that covers a variety of topics.

Of course, if you have an exciting paper to add, please feel free to use the comments section below to let us know!

Anyway, enough said, here are some of my highlights from the past year:

Simulations of electronic excitations in an iron-based superconductor. Image by Oak Ridge National Laboratory via flickr.

JANUARY – iron-based superconductors

Since they were discovered in 2008, iron-based superconductors, the pnictides, have been one of the hottest topics in condensed matter physics. Part of their appeal stems from the fact that they are based on iron, which is a magnetic element. Normally, magnets and superconductivity exclude each other.

The iron-based compounds have a similar crystal structure as the so-called cuprates, which are the materials with the highest superconducting temperatures known. The mechanism for these high-temperature superconductors is unknown, and studying the iron-based superconductors may also be relevant to the understanding of the cuprates.

This paper published in Science shows for the first time that the electrons in the iron-based superconductors show a periodic arrangement that is different to the periodicity of the atoms in the crystal. Similar observations have been made in the cuprates, and their understanding is considered important to the mechanism of high-temperature superconductivity.

Chuang, T., Allan, M., Lee, J., Xie, Y., Ni, N., Bud’ko, S., Boebinger, G., Canfield, P., & Davis, J. (2010). Nematic Electronic Structure in the “Parent” State of the Iron-Based Superconductor Ca(Fe1-xCox)2As2 Science, 327 (5962), 181-184 DOI: 10.1126/science.1181083

[…]

Continue reading...

What are the realistic promises of metamaterials and cloaking?

November 16, 2010

10 Comments

Metamaterials are very exciting structures, one of the most exciting areas in photonics, I think. That’s because they allow an almost arbitrary modification of light (or acoustic) waves propagating through the material. Sadly, however, the highly promising potential of metamaterials gets often completely overblown by news reporting on fantastic effects. Cloaking devices are the prime example. Here I try to come up with a few points that might help to sort science from fiction.

Metamaterials are small metallic structures, typically rings or wires, that locally change the materials properties. These structures are much smaller than the wavelength of light. To a light wave, it is as if the structure is not made of tiny rings and wires, but looks like a homogeneous material. Hence their name ‘metamaterials’. Meta is Greek and means beyond. The first metamaterials all used the same small units of wires and rings, repeated over and over. With this, you can achieve a negative index of refraction, which enables superlenses – lenses with perfect resolution.

The original metamaterial designs consisted of electromagnetic resonators made of rings and wires. These devices are for THz and GHz radiofrequencies. Credit: NASA, via wikimedia

The next key advance was that metamaterials needn’t only consist of uniform assemblies of rings and wires. If you change the properties of each unit of a metamaterial, you can create a material that to light looks as if it changes its properties. This way it is possible to modify the propagation of light as it goes through the metamaterial. You can make it go round corners, turn it around. In theory, the possibilities are nearly endless, that much is clear.

The prime example to demonstrate the possibilities of metamaterials is the optical cloak. The term is borrowed from the science fiction series Star Trek. And naturally, it is these kind of visions that let our fantasy go wild when thinking about metamaterials cloaking. Images of Star Trek, or ‘Harry Potter cloaks’ and the ‘invisible man’ are often conjured when journalists, university press offices and even scientists try to explain metamaterials to the public. Sadly, in relation to what metamaterials can do, this is nonsense.

So here are a few things that metamaterials can and cannot do.

[…]

Continue reading...